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ABSTRACT
Nowadays, numerical simulation has played a vital role in analyz-
ing and assessing earthquakes and their a�ects. Storage I/O perfor-
mance and network bandwidth have not kept pace with the growth
of computing power; as a result, post-processing has become a
bottleneck to end-to-end simulation performance. One approach
to solving this performance imbalance is to reduce the amount
of output data by implementing in-situ visualization, which con-
structs the visualization concurrent with the simulation. In this
paper, we propose a new software utility named "awp-odc-insitu"
that is based on the well-known open-source seismic simulation
software "awp-odc-os" and capable of performing in-situ visualiza-
tion functionality by employing the open-source data analysis and
visualization application "ParaView" and its in-situ library "Par-
aView Catalyst". Moreover, the paper discusses the implementation
of in-situ functionality and analyzes the performance and e�ciency
of the "awp-odc-insitu" code to demonstrate the code is of potential
use in practical seismic research.

CCS CONCEPTS
• Human-centered computing → Geographic visualization;
• Applied computing→ Earth and atmospheric sciences.
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1 INTRODUCTION
Nowadays, numerical simulation plays an increasingly critical role
in analyzing and assessing earthquakes and their e�ects. Compared
to the improvement of computational performance evident in the
leadership-class high-performance computing architectures, the
improvement of Storage I/O performance and network bandwidth
is slow-paced; as a result, post-processing has become a bottleneck
to end-to-end simulation performance. One approach to solving
this performance imbalance is to reduce the amount of output
data by implementing in-situ visualization, which constructs the
visualization concurrent with the simulation [7].

In this paper, we propose a software utility named "awp-odc-
insitu" that is based on the open-source seismic simulation soft-
ware "awp-odc-os" [5]. Over the years, the "awp-odc-os" team has
implemented numerous optimizations for this software [6]. The
"awp-odc-os" software is well-known for its high performance and
e�ciency; this paper describes the objective of implementing in-situ
visualization functionality within "awp-odc-os" by employing the
open-source data analysis and visualization application "ParaView"
[2] and its in-situ library, "ParaView Catalyst" [3]. Moreover, the
paper discusses the functionality and analyzes the performance and
e�ciency of the "awp-odc-insitu" code to demonstrate the code is
of potential use in practical seismic research.

The paper is organized as follows: In Section 2, we review some
related work. The methodology will be introduced in section 3. We
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present the work�ow of the "awp-odc-insitu" software, its imple-
mentation and key features in Section 4. In Section 5, we show
some performance benchmarks. Finally, concluding remarks are
given in section 6.

2 RELATEDWORK
Given the motivation mentioned in the Introduction, there have
been successful attempts to implement in-situ visualization in other
scienti�c domains. Among these previous works, we introduce
four of them which also implement their software by utilizing the
ParaView ecosystem. Dr. Ahrens and his team successfully imple-
mented the novel ParaView Cinema framework into the MPAS-
Ocean simulation which can provide highly interactive, image-
based in situ visualization and analysis that promotes exploration
[1]. A research team from Los Alamos National Laboratory lead by
Dr. Patchett has performed a large-scale in-situ visualization sim-
ulation for an asteroid-generated tsunami, which results of these
simulations will support NASA’s O�ce of Planetary Defense in
deciding how to best track near-Earth objects (NEOs) [10]. Loren-
deau from University of Bordeaux has successfully integrated the
ParaView Catalyst into code Saturne, which is a computational �uid
dynamics code used by the largest electricity producers in Europe
[8]. Hong Yi and his colleagues demonstrated their approach for
in-situ visualization using ParaView Catalyst with a fully resolved
turbulent �ow through a 2x2 reactor sub-channel with complex
geometry. They were able to perform the simulation steering along
with in-situ visualization to adjust the pressure gradient which
drove the �ow through the periodic domain until a desired �ow
rate was achieved [12].

3 METHODOLOGY
Our goal in this work is to integrate the ParaView with "awp-odc-
os" software and use ParaView Catalyst to implement real-time
seismic wave visualization. ParaView is an open-source, multi-
platform data analysis and visualization application developed and
maintained by Kitware, Inc., which adapts the Visualization Toolkit
(VTK) as the data processing and rendering engine and has a user
interface written using Qt application development framework. The
"awp-odc-os" is a CUDA C based open source scienti�c modeling
software developed and maintained by HPGeoC Lab at San Diego
Supercomputer Center, which is capable of high performance and
large-scale earthquake wave propagation simulations. Our e�ort
within this work can be concluded as three main phases. Firstly,
we located the code used to perform memory transfer between
CPU and GPU in "awp-odc-os" and inserted our C based code to
re-direct the data downloaded from GPU memory into a VTK grid
data structure located in CPU memory. Note that we discarded the
data bu�er design used in "awp-odc-os" code because our "awp-
odc-insitu" code is aiming at real-time visualization. Secondly, we
developed an adaptor code with ParaView C++ API to pass the VTK
grid data to Paraview GUI utilizing the Catalyst Co-Processing
library. Within this phase, we also implemented a multiple streams
scheme to overlap the communication with computation. Thirdly,
We prepared Python scripts with ParaView Python API alongside
with our C/C++ code to perform tasks like in-situ visualization,
movie rendering and data output.

Figure 1: The work�ow for "awp-odc-os" software.

4 IMPLEMENTATION
In the following section, we will describe the implementation of
"awp-odc-insitu", as well as the design of the "awp-odc-insitu"
work�ow that makes "awp-odc-insitu" di�erent from the original
"awp-odc-os" implementation.

The visualization software package, "ParaView", can be used
to integrate post-processing and/or visualization along with dis-
tributed seismic simulation [2] - the original work�ow of the "awp-
odc-os" software needs to be changed in order to add in-situ vi-
sualization functionality using ParaView. As shown in Figure 1,
before a simulation starts, the "awp-odc-os" software will create an
I/O bu�er in main memory, for storing data from multiple output
iterations. For each output iteration, the CPU downloads the output
data from the GPU and saves it in the I/O bu�er. Whenever the
I/O bu�er is full, the CPU outputs the data to storage in binary for-
mat with MPI-IO and empties the I/O bu�er for subsequent output
iterations.

As shown in Figure 2, the computing process of "awp-odc-os"
and "awp-odc-insitu" is about the same. As for handling I/O tasks,
the "awp-odc-insitu" implementation discards the I/O bu�er in CPU
memory, because the result will be visualized as soon as it is avail-
able rather than bu�ering it in memory. For each output iteration,
the CPU still downloads the output data from the GPU memory;
However, the output data is sent to a ParaView co-processing adap-
tor. The adaptor is created to call the ParaView co-processing library,
aka the Paraview Catalyst library, which maps the output data into
VTK data structures and passes the dataset to ParaView to perform
the following I/O procedures [2].



In-situ Analysis and Visualization of Earthquake Simulation PEARC ’19, July 28 – August 1, 2019, Chicago, IL

Figure 2: The work�ow for "awp-odc-insitu" software.

The ParaView Catalyst library provides three main output op-
tions: data extract writers, movie rendering, and live visualization.
We prepared generalized Catalyst co-processing python scripts
along with our "awp-odc-insitu" software for all three options so
users can select the proper script to implement its corresponding
functionality. The data extract writer script will save the output data
in the form of a series of "Parallel VTK Unstructured Grid" (pvtu)
�les, which can be opened and viewed directly by the ParaView
GUI. The movie rendering script generates one frame of image
from the top-view of the output data for every output iteration and
these frames can be later rendered as a movie. As shown in Figure
3, the live visualization script sends the output data directly to the
ParaView "Catalyst" pipeline so the user can view the data in real-
time with the ParaView GUI. Since our "awp-odc-insitu" has packed
values along x-axis(Vx), y-axis(Vy) and z-axis(Vz) together, the user
can switch among Vx, Vy and Vz components seamlessly. Moreover,
the user can also attach a terrain satellite map as the texture map
of the output grid to improve the visualization experience.

5 BENCHMARKING AND ANALYSIS
5.1 Graphical Display with Remote Desktop
The "awp-odc-os" software can run on a wide range of di�erent
systems from a single notebook computer with NVIDIA GPU to
peta-scale supercomputers like "Blue Waters" and "Titan" [4] [11].
Our "awp-odc-insitu" software inherits most of the feature variety
from "awp-odc-os", however, since we desired to provide in-situ

visualization, our implementation requires a local or remote desktop
for the ParaView GUI display. The solution we chose for remote
vieiwing is VirtualGL and TurboVNC to provide the remote X-
Windows environment. VirtualGL is an open source toolkit that
gives any Unix or Linux remote display software the ability to run
OpenGL applications with full 3D hardware acceleration and the
TurboVNC is a derivative of VNC that is tuned to provide peak
performance for 3D and video workloads [9]. The "awp-odc-insitu"
software requires installation of both VirtualGL and TurboVNC on
the remote GPU server. Before the simulation starts, the user needs
to open a VNC server session on the remote machine and access
the remote desktop from the local machine with a VNC viewer.

5.2 Benchmark Environment
We ran our benchmark tests of the "awp-odc-insitu" code on the
"rincon" machine which is a local system utilizing the GigaIO™
FabreX™ solution. The connections between compute, storage and
application accelerator resources in the GigaIO FabreX network are
implemented with the robust, packetized communication protocol
of industry-standard PCI Express (PCIe). The speci�c con�guration
comprises a Supermicro 5018R-M 1U server with a Xeon E5-2680 v4
@ 2.4GHz (16 cores) with 128GB of main memory. There are three
PCIe Gen 3 x16 connections between the FabreX AIC resources
chassis; each connecting 4x NVIDIA GTX 1080 Ti GPUs for a total
of 12 GPUs. The system also contains 8 Samsung 800GB NVMe
drives in a RAID0 con�guration, which is also connected to the
FabreX switch with a PCIe Gen 3 x16 connection. The code was
compiled on the Ubuntu-1804 operating system with GCC-7.3.0
and CUDA-10.0 along with MPI package OpenMPI-2.1.1.

5.3 Performance Analysis
We performed a weak-scaling test to compare the performance and
e�ciency of the "awp-odc-insitu" software and the "awp-odc-os"
software. The workload on each GPU is 512x512x256 grid points
for a total of 2000 iterations. Both codes output the ground velocity
vectors (Vx, Vy, Vz) every 100 iterations. The performance and e�-
ciency benchmark results are shown in Tables 1 and 2, respectively.
For the "awp-odc-insitu" software, as mentioned above, the "grid"
mode outputs the data in "pvtu" format, the "movie" mode outputs
the data as one frame of top-view image in "png" format, and the
"live" mode outputs the data directly to the ParaView GUI instead
of saving the data to storage. As for the "awp-odc-os" software, the
"binary" mode outputs the data in the binary format with MPI-IO
and the "no-output" mode means the code won’t save the output
data at all.

We choose to measure the performance by counting �oating
point operations per second (FLOP/s). Since the I/O operation is
one part of the end-to-end simulation process which consumes
run-time without contributing �oating point operations, the less
time used by I/O operation the higher FLOP/s the software can
achieve within a given time frame. For accessing parallel e�ciency,
we choose to measure as a percentage the ratio of the achieved
performance to the ideal performance scaled from 1x GPU up to
12x GPUs.

From the results shown in Table 1, we can see that "awp-odc-
insitu" achieved comparable parallel performance and e�ciency
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Figure 3: Screenshot captured while "awp-odc-insitu" was performing live-visualization with 4x NVIDIA GTX1080Ti GPUs;
the simulated seismic wave is propagating through the surface of the earth.

to the "awp-odc-os" implementation. Taking the largest 12x GPU
tests as an example, the "grid" mode of "awp-odc-insitu" obtains a
performance of 2362.78 GFLOP/s which is very close to the "binary"
mode of "awp-odc-os" code at 2393.02 GFLOP/s. The "movie" mode
of our "awp-odc-insitu" only achieved 2101.01 GFLOP/s. However,
this performance is also acceptable if we consider the output �le
size of this mode is only 145 KB, which is 444x smaller than the
output �le size in the "binary" mode of "awp-odc-os" code. When we
compare the "live" mode with the "no-output" mode, we found that
we implemented the live visualization with a very small overhead,
from 2673.61 GFLOP/s to 2611.42 GFLOP/s. We note that our "awp-
odc-insitu" grid mode out-performed "awp-odc-os" binary mode,
even the "no-output" mode with 1-2 GPUs, which is due to the
fact that our "awp-odc-insitu" uses the "multiple CUDA streams"
scheme which overlaps the I/O processing with GPU computing.
This "multiple CUDA streams" feature will be included in a future
open-source "awp-odc-os" release.

The parallel e�ciency results in Table 2 show that our "awp-
odc-insitu" code achieves very close scalability compared to the
"awp-odc-os" software. Both the "awp-odc-os" software and "awp-
odc-insitu" software can achieve 90% parallel e�ciency up to 8x
GPUs. For the 12x GPU test, "awp-odc-os" binary mode only out-
performed "awp-odc-insitu" grid mode by 3.5% and the "awp-odc-
insitu" software in movie and live modes all achieved higher parallel
e�ciency, which shows the "awp-odc-insitu" has the potential to
be deployed on large distributed systems.

6 CONCLUSIONS AND FUTUREWORK
Over the course of this work, we developed the "awp-odc-insitu"
code to provide in-situ visualization functionality for the "awp-
odc-os" seismic simulation software. With in-situ visualization,
researchers can both reduce the usage of storage and improve the
post-processing e�ciency. To verify the parallel performance and
e�ciency of our code, we also ran some benchmarks using this
software on a multiple-GPU machine and the results show that
our in-situ implementation achieves expected performance and
e�ciency.

The current implementation of "awp-odc-insitu" is just the begin-
ning of our research project. In addition to continuing optimization
of the I/O operations and tuning performance, we plan to bench-
mark our code on a larger distributed system like the Comet system
at the San Diego Supercomputer Center or the Blue Waters system
at the National Center for Supercomputing Applications. Another
goal for the near future is data compression - this feature will allow
the "awp-odc-insitu" code to further reduce I/O data volume, which
could improve the I/O operations e�ciency.
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