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ABSTRACT 
The development of composable systems architecture1 marks a 
significant shift in resource allocation and utilization within data 
centers. This paper presents a composable architecture scaling up 
to 32 GPUs on a single node, addressing the technical challenges 
encountered and the innovative solutions implemented. This design 
introduces a flexible and dynamic resource distribution mechanism, 
particularly for GPUs, enabling tailored allocation to meet varying 
node demands. The architecture's dynamic nature allows for the 
flexible assignment and reassignment of hardware resources, such 
as GPUs, to different nodes as required, offering unprecedented 
capability and flexibility.  
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1  Composable Systems Architecture 
The technical challenge of scaling up a significant number of GPUs 
to a single node involves integrating 32 GPUs without modifying 
any existing code. This paper highlights the innovative approach 
taken to restructure traditional server resources into a more 
dynamic and user-centric model, enabling users to harness a 
substantial increase in computational power on a single node, 
tailored to their specific requirements. This composability not only 
facilitates ease of use but also expands the potential for 
computational tasks previously constrained by traditional servers. 
The composable systems architecture discussed is distinguished by 
its flexibility and capability to create configurations previously 
deemed impossible.   
 
Figure 1. depicts a composable platform within a data center, 
contrasting traditional static infrastructure with a more dynamic, 
disaggregated approach. The left side shows a rack filled with 

fixed-function servers, whereas the rack on the right illustrates a 
flexible configuration with disaggregated components. Key 
advantages of this architecture include the ability to create highly 
configurable servers, such as a "32 GPU supercomputer," to deploy 
scalable solutions rapidly, to maximize resource utilization, and to 
enable heterogeneous computing. 
 

 
Figure 1: Composable Platform in the Datacenter 
 
Figure 2 illustrates the memory fabric designed to carry all traffic 
in a data center environment. This fabric enables both server 
composition and inter-node communication, supporting various 
protocols like NVMe-OF, GDR, Libfabric, and MPI. It operates on 
a single PCIe network and promises no performance penalty, 
aiming to minimize the total cost of ownership (TCO) and improve 
serviceability. Additionally, it delivers scalability and easy 
integration, culminating in a rack-scale composition that is flexible 
enough to accommodate any server, or device, at any time. 

 
 
Figure 2: One Universal AI Memory Fabric Carries All Traffic 
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Figure 3: Hardware and Connectivity 
 
Figure 3. shows the hardware and connectivity components of the 
composable infrastructure, focusing on the central role of the PCIe 
switch that interfaces with various elements like application 
servers, GPU servers, and storage solutions. The PCIe switch is 
designed to enable direct GPU communication (GPU Direct 
Memory Access), high-performance storage access (PCIe NVMe), 
and memory access (NVMe-oF and Memory Semantics).  
 
A critical aspect of the system is the unified fabric which facilitates 
both traditional composability through a switching chip, and 
advanced inter-node communication channels, like those available 
with InfiniBand and high-speed Ethernet. This singular 
infrastructure enables the creation of a “server” connected to 32 
GPUs, with the potential to extend this fabric substantially into a 
comprehensive data center solution. 
 

 
 

Figure 4: AI + Accelerated Computing Before and After 
 
Figure 4. details the state of AI and accelerated computing before 
the introduction of this solution. The left side of the diagram 
illustrates a typical networking setup for 32 GPUs, arranged into 
eight servers, with four GPUs in each server, and interconnected 
through Ethernet or InfiniBand. Harnessing the power of these 32 
GPUs currently requires communication using messaging 
protocols such as MPI (Message Passing Interface), CUDA-aware 
MPI, and/or NCCL/RCCL (NVIDIA Collective Communications 
Library/Radeon Collective Communications Library). These 
protocols are essential for communication between GPUs and are 
used to manage parallel processing tasks, but they add quite a bit of 
complexity, including software changes to distribute the code 
across servers. On the right side, all GPUs are aggregated onto a 
single fabric, on a single server, which presents technical 
challenges described in this paper. Figure 5. shows a functional 
layout of the novel 32 GPU server made possible from the 
composable architecture.  
 

 
 
Figure 5: 32 GPU Server Configuration 

2 Technical Challenges 
Scaling to 32 GPUs presents several technical challenges, including 
BIOS enumeration, GPU driver support, and AI framework 
compatibility. Each challenge is dissected to understand the 
limitations of current system architectures and the innovative 
approaches taken to address them.  

2.1 BIOS Enumeration 
Addressing the BIOS enumeration challenge in GPU scaling 
involves accommodating a large memory footprint within modern 
system architectures. For example, integrating thirty-two 64GB 
Mi210 GPUs, which cumulatively require 2TB of memory, poses a 
substantial challenge due to the memory window limitations of 
CPUs. This challenge is exacerbated by vendor-specific BIOS 
configurations that may inefficiently allocate memory, potentially 
doubling the required system memory to accommodate GPU 
resources. Collaborative efforts with vendors were initiated to 
reconcile BIOS enumeration algorithms with the capabilities of 
contemporary CPU architectures, which are progressively 
supporting larger physical address spaces. This collaboration aims 
to ensure that system BIOS can support a multitude of devices, 
leveraging advancements in technology such as the advent of CXL. 
This development is anticipated to be a significant stride forward 
for the industry, allowing for more flexible and powerful 
composability solutions. 
 

 

Figure 6: 32 GPU LSPCI Tree 

Figure 6. shows an LSPCI tree output displaying the enumeration 
of 32 GPUs. On the left, is the primary PCIe root complex, and 
branching off of this are the GPUs organized into Advanced Micro 
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Devices, Inc. [AMD] nodes, specifically identifying each as an 
Alphacore/Mi200 [Instinct MI210]. The GPUs are further 
organized into groups, with annotations indicating "4 GPUs Per 
Drawer" and "8 GPUs Per APA," corresponding to the hierarchical 
physical arrangement within the system, and that all 32 GPUs have 
been successfully enumerated and are recognized by the system. 

2.2 GPU Driver Support 
GPU driver support is essential for utilizing the GPUs once 
recognized by the system. Driver support is also dependent on 
compatibility with various computing frameworks, like CUDA for 
NVIDIA or ROCm for AMD, which provide the runtime 
environments necessary for executing parallel computations on the 
GPUs. The drivers must be optimized to exploit the full bandwidth 
provided by the PCIe lanes, minimizing latency, and maximizing 
throughput for data-intensive tasks.  
 
Engagement with vendors such as AMD and NVIDIA expanded 
the limits of GPU instances supported by their drivers (CUDA 12.3 
and ROCm 5.7). The endeavor required strategic partnerships with 
those vendors to address and amend inherent driver restrictions, 
enabling support for an increased GPU count. Successful vendor 
collaboration led to driver updates being up-streamed, culminating 
in the latest driver releases supporting up to 64 GPUs—a milestone 
announcement. This breakthrough in driver support paves the way 
for future enhancements, projecting the possibility of even greater 
GPU scalability in subsequent system generations.  

2.3 AI Framework Compatibility 
AI frameworks like PyTorch and TensorFlow abstract away the 
complexity of directly interfacing with hardware, allowing 
developers to leverage GPUs for accelerated computing with 
minimal concern for the underlying infrastructure. This synergy 
requires the frameworks to be cognizant of the increased GPU 
capacity, a challenge met by advocating for changes within these 
ecosystems to accommodate the higher GPU counts found in 
advanced computing nodes. Through collaboration and open-
source community engagement, adjustments were made to the 
frameworks' codebases (PyTorch 2.1 and TensorFlow 19.10), 
reflecting the new hardware capabilities, thus resolving issues, and 
expanding the operational limits for AI computations. 

2.4 Containers 
The adoption of containerization in AI development represents a 
significant leap forward in simplifying computational 
infrastructure. Containers encapsulate all the necessary 
components—code, runtime, system tools—into a single package, 
thereby abstracting the complexities of the underlying 
infrastructure. Utilizing repositories like NVIDIA GPU Cloud 
(NGC) or AMD Instinct's Docker container libraries, developers 
can deploy pre-built containers with optimized settings for high-
performance AI applications. This approach streamlines 
workflows, allowing for rapid deployment and testing across 
various environments, and is crucial for demonstrating the 

capabilities of advanced computing systems without the overhead 
of traditional infrastructure setup. 

3  Performance and Results 
The performance of the composable systems architecture was 
explored through GPU-to-GPU peer-to-peer bandwidth tests. As 
shown in Figure 7., utilizing x8 connectivity, referred to as the "128 
connection", the system facilitates efficient inter-GPU 
communication with minimal switching. Performance tests show 
P2P bandwidth reaching approximately 25 GB/s, against a 
theoretical maximum of 32 GB/s. This is attributed to a design that 
allows GPUs to bypass the CPU's root port complex, interfacing 
directly over a unified port, which significantly reduces latency and 
enhances data transfer rates. 
 

 

Figure 7: 32 GPU to GPU P2P Bandwidth  

This peer-to-peer configuration substantially reduces the need for 
data to traverse the upper hierarchical layers of the CPU, thereby 
decreasing latency and enhancing overall performance. In 
conventional systems, GPU-to-GPU communication typically 
follows a multi-tiered path. The data must traverse from the source 
GPU through the node's CPU, then to the other CPU, and then move 
down through its PCIe switch to the target GPU. This hierarchical 
traversal, often involving multiple hops and the CPU's 
involvement, introduces latency and affects the overall efficiency 
of the GPU communication this system eliminates. 
 
The theoretical performance explored above through bandwidth 
tests was then tested on two types of codes: an LLM for AI 
applications, and a CFD simulation for HPC workloads. 
 

Figure 8: LLaMA 7B Training Runtime (Single Node) 
 
Figure 8. illustrates the training runtime for a LLaMA2 LLM model 
with 7 billion parameters across different GPU configurations on a 
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single node. There are three bars, each representing the number of 
GPUs used: 8, 16, and 32. The first bar indicates that using 8 GPUs 
results in a training runtime of 19 hours and 5 minutes. The second 
bar shows a reduced runtime of 10 hours and 3.5 minutes when the 
number of GPUs is increased to 16. The third bar demonstrates a 
further reduction in training time to just 4 hours and 59.2 minutes 
with 32 GPUs demonstrating perfect scaling as the number of 
GPUs is increased.  
 
For HPC applications, Figure 9. shows Dr. Moritz Lehmann's 
FluidX3D3 CFD simulation of the Concorde's landing, resolving an 
immense 40 billion cell problem in just 33 hours using a 
composable system with 32 AMD Instinct MI210 accelerators.  The 
factors making this possible include support for a high number of 
GPUs, substantial directly accessible GPU Memory VRAM of 
2TB, and a single high-performance network fabric, which together 
drastically improve CFD simulation performance. 
 

 
 
Figure 9: Concorde Landing Simulation 

The immense GPU memory pool available with a 32-GPU system 
is specifically tailored for handling very large models, ideal for 
large datasets and complex AI models. It provides an extensive 
memory space for GPU computations, thereby minimizing the need 
for frequent data transfers between the GPU and system memory. 
This enables the processing of larger and more complex models 
with efficiency, significantly enhancing overall system 
performance and computational productivity. 

4  Conclusion 
The architecture described in this paper represents a significant leap 
in the realm of high-performance computing and AI, providing a 
robust and scalable solution for integrating a large number of GPUs 
into a single-node system. Through the innovative use of 
composable systems, this novel architecture has demonstrated the 
ability to scale to 32 GPUs without necessitating any changes to 
existing codebases, effectively overcoming significant technical 
barriers associated with BIOS enumeration, GPU driver support, 
and AI framework compatibility. This paper's findings have 
considerable implications for the future of AI and high-
performance computing infrastructure. This architecture paves the 
way for enhanced computational capabilities within data centers, 
allowing for greater scalability and adaptability to the ever-
increasing computational demands of modern AI and machine 
learning workloads. 

5  Future Work 
Future research directions include the integration of the Compute 
Express Link (CXL) into the composable system architecture. The 
roadmap for CXL integration includes the development of a new 
generation of hardware that can fully leverage this interconnect 
standard, offering greater bandwidth and reduced latency. 
particularly concerning memory pooling and coherence. CXL 
facilitates the aggregation of various memory types, offering much 
higher capacities than previously possible, and introduces memory 
coherency with CXL 3.0. This opens the door to rapidly 
composable infrastructure to meet the diverse needs of AI 
workloads. This advancement is expected to optimize the 
composability of resources further, enabling even more dynamic 
and efficient allocation of GPUs, memory, and other compute 
elements across nodes. Additionally, research will focus on 
creating robust management software for these enhancements, 
ensuring seamless operation and integration with existing data 
center infrastructures. 
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